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Abstract

An optimization study of sandwich structures with cellular cores for minimum noise radiation in a wide frequency band,

subject to the constraints on the fundamental frequency and weight is presented. Sensitivity functions of the radiated

acoustic power are used to improve the computational time and accuracy in near optimization. Numerical examples

indicate that significant reduction of narrowband and broadband sound radiation can be achieved.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Since sandwich structures in aerospace industry are often stiff and light, and have low damping, they can
experience resonant motions and radiate sound. Advanced sandwiches structures must meet not only stiffness
to weight ratio demands, but also have improved acoustic performance. An optimization study of the cellular
core of sandwich structures to minimize the radiated sound power in a wide frequency band, subject to the
constraints on the fundamental frequency and weight is presented.

Sandwich structures consist of three layers. Two thin and stiff skins are bonded to a low density core on
both sides. The skins usually carry the in-plane loads and bending moments, while the core, which has lower
stiffness compared to the skins, resists the transverse shear loads. The advantage of composite sandwich
structures lies in that they possess large bending or torsional rigidity with very low-specific weights; they also
provide an excellent platform for optimization of structures to meet various objectives. Minimum weight
sandwiches have been studied extensively [1,2]. Optimization of sandwich structure for sound reduction is
more challenging, and has been studied by a few researchers [3–5]. The present study is focused on sandwich
structures with a cellular, frame-like core.

The multifunctional properties of cellular solids have generated a great deal of interest for their application
in the aerospace industry. The topological design of periodic multifunctional core structures has been
explored, and the relationship between topology and performance has been established by Evans, Hutchinson,
Fleck, Ashby and Wadley [6]. Vibration of sandwich beams with a honeycomb truss core is analyzed in
Ref. [7]. A unit cell analysis to investigate the effect of its resonance is also presented in this reference. It has
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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been found out that the individual cell may be used as a design tool to attenuate the vibration. The acoustic
behavior of negative Poisson ratio cellular structures has been studied in the literature [8,9]. Other studies have
demonstrated that the structural-acoustic optimization may not result in any overall structural pattern
(periodicity) when the band of frequencies being studied includes more than one mode of the structure. This
can be caused by the complex interactions among the modes in and near the band [10,11].

The structural-acoustic optimization studies can be done in two ways. The first approach computes the
radiated acoustic power from the structural motion directly and then minimizes the acoustic power [4]. The
second approach proposes first to develop surface velocity profiles for the structure with minimum acoustic
radiation known as ‘‘weak radiators’’ [12], and then optimizes the structure to meet the desired velocity
profiles [13]. The present work follows the first approach.

This paper is focused on shape optimization of hexagonal truss core sandwich beams. The parameters
affecting the shape of the unit cell are considered as design parameters. The total weight and fundamental
frequency are constrained. We first analyze the sound radiation from the sandwiches with two periodic cores:
honeycomb and re-entrant, and then examine the sensitivity of the acoustic power with respect to shape
changes of the unit cells in these cores.

The paper is organized as follows. Firstly, we present the geometry of the cellular core and model the
equations of motion of the structure by finite elements. Secondly, we obtain the acoustic power radiated by
the structure by using the Rayleigh integral leading to a quadratic form in terms of the normal velocities on the
radiating surface of the sandwich. Thirdly, we study the variation of the radiated acoustic power with respect
to the shape change of unit cells. Fourthly, we formulate the sensitivity of the radiated acoustic power,
resonant frequencies and weight of the sandwich with respect to design variables. Finally, we study the
optimization problem for minimizing the radiated acoustic power with respect to a set of design parameters
which control the shape of the individual unit cell. The constraints on the fundamental frequency and weight
are imposed in the optimization. The optimization problem is solved by using a quasi-Newton method.
Numerical results are presented to demonstrate the theoretical development.
2. Theoretical formulation

2.1. Configuration

Rectangular, honeycomb and re-entrant types of core structures are widely studied in prismatic core
sandwiches [14]. Other periodic topologies such as chiral comb also exist for the core [15]. Here, we consider
sandwich beams with a cellular truss-core as shown in Fig. 1 where the skins and cores are separated for
illustration. The upper part of the figure depicts the honeycomb beam. The lower one shows the re-entrant
core beam. Note that the re-entrant core has a negative Poisson ratio. Although we consider periodic cell
topology in the analysis part of the study, later we shall allow generations of aperiodic cell topologies via
design parameters and let the optimization process shape them.

The sandwich structure is exposed to a plane wave of acoustic pressure at the top surface as shown in Fig. 2
and radiates to the semi-infinite space. We assume that the sandwich beam is infinitely baffled at the upper and
lower surfaces. Fig. 2 also displays the observation surface where the acoustic power radiated from the beam is
computed.
Skins Cores

Fig. 1. Beams with hexagonal cores. The top core consists of honeycomb cells and the bottom core consists of re-entrant cells. The skins

and cores are separated for illustration purpose.
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Fig. 2. Structural and acoustical coordinate systems.

Fig. 3. Local and global coordinate systems of a frame element.
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2.2. Finite element modeling of the sandwich beam

The core of the sandwich consists of two dimensional frames modeled as Euler–Bernoulli beams. In Fig. 3
two coordinate systems: a local coordinate system ðr; sÞ and a global coordinate system ðx; yÞ are shown. We
shall derive equations of motion by applying Hamilton’s principle

Z t2

t1

dðT �U þW Þdt ¼ 0, (1)

where T and U are the kinetic and strain energies of the system, and dW is the virtual work done by the
external forces. The strain and kinetic energies of all the elements in the local coordinate system are given in
the same form as

U ðeÞ ¼
1

2
EA

Z Le

0

u2
r ðr; tÞdrþ

1

2
EI

Z Le

0

w2
rrðr; tÞdr,

T ðeÞ ¼
1

2
rA

Z Le

0

u2
t ðr; tÞdrþ

1

2
rA

Z Le

0

w2
t ðr; tÞdr, (2)

where E and r are Young’s modulus and the mass density of the element, A and I are, respectively, the cross-
sectional area and the second-order moment of the beam element cross section. Subscripts r and t denote
partial derivatives with respect to the local coordinate and time, respectively.
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The virtual work done by the external forces on an element can be expressed as

dW ðeÞ ¼

Z Le

0

duðr; tÞf uðr; tÞdrþ

Z Le

0

dwðr; tÞf wðr; tÞdr, (3)

where f uðr; tÞ and f wðr; tÞ are longitudinal and transverse excitations per unit length acting on the element. In
the following, we shall consider harmonic vibrations only. We assume the element solution to be in the form

uðr;oÞ ¼ NuðrÞ � u
ðeÞðoÞ,

wðr;oÞ ¼ NwðrÞ � w
ðeÞðoÞ, (4)

where NuðrÞ and NwðrÞ are the Hermitian shape function for longitudinal and transverse displacements, and
uðeÞðoÞ ¼ ½ui;uj�

T and wðeÞðoÞ ¼ ½wi; yi;wj ; yj�
T where i, j are node numbers and y ¼ qw=qr. Hamilton’s principle

leads to the equations of motion in terms of the global nodal displacement vector ~u

ðîb� o2ÞM~uðoÞ þ ð1þ îaÞK~uðoÞ ¼ fðoÞ; î ¼
ffiffiffiffiffiffiffi
�1
p

, (5)

where ~u is the assembled generalized displacement vector combined from the local vectors uðeÞ and wðeÞ;M, K
and fðoÞ are the assembled element mass and stiffness matrices and nodal forces. They are also assembled
from their directional correspondents given in the following form:

Mu ¼

Z Le

0

NT
u rANu dr; Ku ¼

Z Le

0

dNu

dr

� �T

EA
dNu

dr
dr,

Mw ¼
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0

NT
wrANw dr; Ku ¼
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0

d2Nw

dr2

� �T

EI
d2Nw

dr2
dr,

fðeÞu ¼

Z Le

0

NT
u f u dr; fðeÞw ¼

Z Le

0

NT
wf w dr. (6)

In the derivation, we have also assumed a Rayleigh damping matrix C ¼ aKþ bM where a and b are
prespecified constants.

3. Acoustic radiation

Assume that a plane acoustic wave of frequency o is incident upon the upper surface of the beam where
x ¼ r, the resultant pressure amplitude of incident and reflected pressures at the top surface of the beam is
p ¼ 2A, where A is the incident pressure amplitude. Thus, the nodal force vector at the top of the surface can
be calculated as

fðeÞw ¼ 2A

Z Le

0

NT
wðxÞdx. (7)

On the bottom surface of the beam shown in Fig. 2, the transmitted acoustic pressure ptðrS0 Þe
îot at an

observation point rS0 due to the surface normal velocity vðrSÞ of the beam can be obtained by using the
Rayleigh integral as

ptðrS0 Þ ¼
îora

2p

Z
S

vðrSÞ
e�îkR

R
dS, (8)

where ra is the air density, rS is the position vector of the surface element dS with the normal velocity vðrSÞ, S

is the vibrating surface of the beam, and R ¼ jrS � rS0 j. The acoustic power W radiated from the baffled beam
is given by an integration over the receiver surface S0

W ðoÞ ¼
1

2

Z
S0

Z
S

vðrSÞ
ora

2p
sinðkRÞ

R

� �
vnðrS0 ÞdS dS0, (9)

where the asterisk indicates complex conjugate.
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To compute the radiated power in finite elements, we take linear shape functions to approximate the
velocity distribution over an element, and use Gaussian quadrature to compute the integration. The effort for
the acoustic power calculation is proportional to the fourth power of the order of the integration. Here, we use
a single-point integration scheme to reduce the computational effort. The difference of the power computed
when using the single point and higher point integrations is about 1% when the element size is at least few
times smaller than the shortest acoustic wavelength in the band [16].

Let the velocity of the kth element be in the form

vkðr; sÞ ¼ Hðr; sÞvðkÞ, (10)

where Hðr; sÞ is a vector of shape functions, and vðkÞ is the nodal normal velocity vector of the element. We
express the radiated acoustic power W as

W ðoÞ ¼
1

2

XM
m¼1

XN

n¼1

vðmÞTBmnv
nðnÞ, (11)

where M and N are the number of elements in the receiver and source surfaces

Bmn ¼ g1

ora

2p
JmJn

sinðkRmnÞ

Rmn

HTH

����
r¼r̄
s¼s̄

(12)

and r̄ and s̄ are the integration points on the receiver and source elements, respectively, Jm and Jn are the
Jacobians at the integration points, and g1 is the Gaussian weighting coefficient for the single-point
integration. Eq. (12) can be readily extended to the case where multiple Gaussian integration points are used.

After the assembly, the radiated acoustic power is

W ðoÞ ¼ 1
2
vTBvn. (13)

Note that B is Hermitian such that B ¼ BH . The acoustic power radiated from the structure is a function of
frequency. In this work, the excitation frequency varies over a band which may include resonant frequencies of
the structure. The objective is to minimize the radiated power over this band. The frequency averaged sound
power over the band can be obtained by integrating W over the frequency band:

W a ¼
1

o2 � o1

Z o2

o1

W ðoÞdo ’
1

o2 � o1

Xm

i¼1

W ðoiÞDoi. (14)
3.1. Analysis of the radiated acoustic power

Acoustic radiation from honeycomb and re-entrant core beams are compared in this section. We consider a
uniform beam 2m long made out of 10 cm thick core and 1 cm thick upper and lower skins. The core of the
beam is discretized with 20 nodes in longitudinal direction and 6 nodes in the thickness direction. This
discretization scheme generates 19 cells in the longitudinal direction and 21

2
cells in the thickness direction as

shown in Fig. 1. Every cell edge thickness is 1 cm thick. Both upper and lower skins and core are made of the
same material. Its modulus of elasticity is 0:71� 1011 Pa and its density is 2700 kg=m3. The boundary
conditions are assumed to be simply supported at both ends where the upper and lower faces are connected to
rigid baffles.

In Fig. 4 the variation of radiated sound power in frequency ranging from 25 to 1500Hz is shown. As seen
from the figure, the re-entrant core transmits less sound than honeycomb core. The frequency averaged power
difference between re-entrant and honeycomb sandwich beam from 25 to 1500Hz is 3.43 dB and from 100 to
1000Hz is 5.36 dB. On the other hand, the fundamental frequency of the re-entrant beam is at 51.90Hz while
the honeycomb one’s is at 102.25Hz. Besides, the total area covered by re-entrant core is 0:097m2 and the area
by honeycomb is 0:068m2. Note that the bending stiffness to weight ratio of the sandwich is related to the
fundamental frequency. The re-entrant sandwich beam possesses about 1=3 times the lower bending stiffness
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Fig. 4. Spectral distribution of the radiated sound power of the optimized and baseline beams. Solid and dashed lines refer to honeycomb

and re-entrant core beams, respectively.
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to weight ratio than the honeycomb beam. These results motivate us to find the optimum core topology which
radiates the minimum sound power while satisfying weight and fundamental frequency constraints.

4. Sensitivity analysis

Sensitivity plays an important role in optimization studies. In particular, analytical expressions of sensitivity
can improve computational efficiency and accuracy at the same time [17]. One rigorous technique to formulate
sensitivity of structural acoustic problems is known as the adjoint variable method [18,19]. Here, we derive as
many explicit expressions for sensitivities as possible. The other sensitivity calculations are computed by the
finite difference method during the optimization. It should be noted that the eigenvalue problem takes the
majority of computational effort in the optimization procedure. Therefore, the sensitivity functions of power
and natural frequencies with respect to design parameters are derived by the differentiation of the equations of
motion.

4.1. Sensitivity of acoustic power

Assume that the sound power is a function of a set of design variables denoted by bk. Differentiating Eq.
(14) with respect to bk, we obtain

qW a

qbk

¼
1

o2 � o1

Xm

i¼1

vTB
qvn

qbk

þ
1

2
vT

qB
qbk

vn
� �

oi

Doi. (15)

The Hermitian coupling matrix B is in general a function of frequency and the geometry of the radiating
surface of the structure. In this study, we assume that the excitation frequency and the geometry of the
radiating surface are not altered by the design parameters so that qB=qbk ¼ 0.

Differentiating Eq. (5) with respect to bk, we obtain

½ðîb� o2ÞMþ ð1þ îaÞK�
q~u
qbk

¼ � ðîb� o2Þ
qM
qbk

þ ð1þ îaÞ
qK
qbk

� �
~u, (16)

where we have assumed that qf=qbk ¼ 0. Note that q~u=qbk can be obtained from Eq. (16) where qM=qbk,
qK=qbk and ~u are available. In the numerical examples reported below, derivatives of mass and stiffness
matrices are computed by using the finite difference method to decrease the level of implementation
complexity. Sensitivity of the harmonic velocity response is given by

qv
qbk

¼ îō
q~u
qbk

. (17)
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Fig. 5. The sensitivity of the frequency averaged power W a with respect to the longitudinal displacement of the nodes. The top plot is for a

honeycomb beam and the bottom one is for a re-entrant beam. Each circle shading level depicts the relative sensitivity which is normalized

by its maximum amplitude.
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Fig. 6. The sensitivity of the fundamental frequency with respect to the longitudinal displacement of the nodes. The top plot is for a

honeycomb beam and the bottom one is for a re-entrant beam. Each circle shading level depicts the relative sensitivity which is normalized

by its maximum amplitude.
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As an example, the sensitivity of the radiated sound power with respect to the longitudinal displacement of
the core nodes is computed for honeycomb and re-entrant sandwich beams as shown in Fig. 5. We consider
the same topologies as introduced in Section 3.1. The frequency band is chosen to be from 100 to 1000Hz to
compute the frequency averaged sensitivity of the beams. It is seen from Fig. 5 that the radiated acoustic
power from honeycomb sandwich beam is more sensitive to node displacements than the re-entrant one. It is
obvious from the sensitivity resolution of honeycomb beam that movements of the interior nodes affect the
radiated sound power more than the face nodes which are connected to skins. This is because the interior
nodes influence the shape change of the core more than the face nodes. Moreover, the honeycomb sensitivity
plot shows that the sensitivity distribution among the nodes appears to be antisymmetric along the length of
the beam, although this anti-symmetry may not exist in other frequency bands.
4.2. Sensitivity of natural frequencies

Since the fundamental frequency of the structure is used as a constraint, its sensitivity with respect to the
design parameters can be obtained by differentiating the following eigenvalue problem:

½K� ljM�fj ¼ 0 and fT
j Mfj ¼ I. (18)

We have

lj;k ¼ fT
j

qK
qbk

� li

qM
qbk

� �
fj. (19)

Note that l1 denotes the fundamental frequency.
In Fig. 6, the sensitivity of the fundamental frequency with respect to the node movements of the

honeycomb and re-entrant sandwich beams is shown. Sensitivity levels of the beams with honeycomb and re-
entrant cores are about the same except for the left and right end nodes. Anti-symmetry of sensitivity
distribution along the length of the beam remains. These analyses of sensitivities with respect to the design
parameters also reinforce that there must exist a compromising solution that minimizes the acoustic radiation
while fulfilling the fundamental frequency constraint.
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5. Structural optimization

The structural-acoustic optimization problem is stated as

minimize W aðbÞ ¼
1

o2 � o1

Z o2

o1

W ðo; bÞdo, ð20Þ

subject to

bl
ipbipbu

i

Pn
i¼1

mi �m0p0

�of ðbÞ þ o0p0

8>>>><
>>>>:

9>>>>=
>>>>;
, ð21Þ

where bl
i and bu

i are the lower and upper bounds of the ith design parameter, mi is the mass of the ith frame
element, m0 is the allowable maximum total mass, of ðbÞ is the fundamental frequency of the beam and o0 is
the allowable minimum fundamental frequency. The lower and upper bounds of the design parameters are set
to avoid excessive element distortion and inconsistent cell geometry. An optimal solution is a structure that
radiates minimum acoustic power in the given frequency band and satisfies the set of constraints.

Assume that there are m inequality constraints and n equality constraints. The inequality constraints can be
converted to equality constraints by introducing m slack variables as follows:

cjðb1; . . . ; bnÞ þ b2
jþn ¼ 0; j ¼ 1; . . . ;m, (22)

where cjðb1; . . . ; bnÞ is shorthand notation for the constraint function. We expand the design parameter vector
to be b ¼ ½b1; . . . ; bn; . . . ; bnþm�

T. Define the Lagrangian function

Lðb;kÞ ¼W tðbÞ þ kTcðbÞ, (23)

where k 2 Rnþm denotes a set of Lagrange multipliers. The quasi-Newton gradient descent algorithm for
searching the optimal solution is stated as follows:

bkþ1 ¼ bk þ akdk,

dk ¼ �Dk=LðbkÞ, (24)

where Dk is a positive definite matrix. The step size ak is determined by a line search method. The line search
method attempts to decrease the objective function along the curve defined by Eq. (24) by iteratively
minimizing a polynomial approximation to the objective function. The quasi-Newton method possesses a fast
rate of convergence while avoiding the Hessian matrix calculation associated with the original Newton method
[20]. Dk is updated as follows:

Dkþ1 ¼ Dk þDu
k, (25)

where

Du
k ¼

pTkpk

pTkqk

�
Dkqkq

T
kDk

qTkDkqk

,

pk ¼ bkþ1 � bk,

qk ¼ =Lðbkþ1Þ � =LðbkÞ. (26)

This update scheme is used to approximate the Hessian matrix, and is also known as the Davidon–
Fletcher–Powell method [20]. The complete algorithm is summarized as follows,
1.
 Input b0, D0 ¼ I, and termination criteria as

jbkþ1 � bkjo�b or jW aðbkþ1Þ �W aðbkþ1Þjo�W a
, (27)

where �b ¼ 10�6 and �W a
¼ 10�5.
2.
 At the kth step, set dk ¼ �Dk=LðbkÞ.
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3.
Fig

resp
Compute the step size ak according to the line search method, and set bkþ1 ¼ bk þ akdk.

4.
 Compute the update matrix Du

k.

5.
 Set Dkþ1 ¼ Dk þDu

k.

6.
 Continue with the ðk þ 1Þth step until the termination criteria are satisfied.

6. Numerical results

The optimization process is executed for three cases: tonal, narrowband and broadband. The same
baseline beam is used in all cases. The baseline beam model introduced in Section 3.1 is employed
with rectangular cells. The same weight and fundamental frequency constraints are applied to all cases.
The total cell edge length of the baseline core is 6.2m. The area of the baseline core where thickness
of each edge is 0.01m is 0:062m2, and the fundamental frequency is 81.8Hz. The maximum core
weight and the minimum fundamental frequency of the beam are determined by those of the baseline
beam as 0:062m2 and 80Hz, respectively. In tonal and narrowband examples, only the longitudinal
movements of the cell nodes are considered as design parameters. The number of design parameters
is 120. In the broadband example, the thicknesses of the core elements are added to the list of
design parameters. The number of design parameters is increased to 258. To prevent crossing of adjacent
nodes, a set of linear inequality constraints is also introduced by limiting nodal movements relative to the
neighboring nodes. Also the movement of the right and left end nodes are fixed with a set of linear equality
constraints.

6.1. Tonal optimization

For this case, we choose an excitation fixed at 700Hz, which is off resonance for the baseline beam. From
Fig. 7 the spectral distribution of the radiated acoustic power from the optimal beam to the one from the
baseline beam can be compared. The reduction of the radiated power at the target frequency is marked in the
graph and is approximately 22.1 dB. The attenuation of sound radiation at the target frequency can cause
intensification of acoustic power at other frequencies, which is common with tonal optimizations. The optimal
topology of the core is given in Fig. 8. The area of the optimal core is at the upper bound of the constraint
0:062m2. We also examine the sensitivity of the objective in optimal configuration as compared with the
baseline one. In Fig. 9, the low level and uniform sensitivity distribution of the radiated acoustic power from
the optimized beam relative to that of the baseline beam is shown. This indicates that the optimization has
converged a local extremum.

The robustness of the tonal optimum is studied in a �10% neighborhood of the optimized design
parameters. Fig. 10 shows the variation of the radiated acoustic power in terms of the norm of perturbations
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. 7. Spectral distribution of the radiated sound power of the sandwich beam for tonal optimization. Dashed and solid lines,

ectively, refer to the optimized and square cellular core baseline sandwich beams.
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Fig. 8. Optimal core topology of the tonal case at 700Hz.
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Fig. 9. The sensitivity of the power with respect to the longitudinal displacement of the nodes. The top plot is for the tonally optimized

beam and the bottom one is for the baseline sandwich beam. Each circle shading level depicts the relative sensitivity which is normalized by

its maximum amplitude.
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Fig. 10. Robustness of the tonal optimum in �10% neighborhood of the optimized design parameters. The optimized power is denoted by

a star marker at zero. The dots denote the power obtained by using the design parameters that violate the weight and fundamental

frequency constraints. The circles denote the cases satisfying all the constraints.
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of the design vector around the optimal one. Some randomly perturbed design parameters violate weight or
fundamental frequency constraints or both. It is also noticeable from Fig. 10 that the randomly perturbed
design parameters within the range of �1% norm of perturbations from the optimal design parameters yield
the acoustic power with a difference up to 15 dB as compared with the optimal response. This robustness with
respect to the perturbations is important to manufacturing the optimal structures where variabilities are
unavoidable.

Since the optimization problem contains a large number of design parameters and is nonlinear with respect
to them, the search algorithm of optimization can reach only a local minimum starting from any initial
condition. It is computationally intensive to study the effects of random initial configurations of the cellular
core on the results of optimization. An example that uses the honeycomb cellular core as the initial and
baseline beam is shown in Fig. 11. The frequency distributions of the radiated acoustic power from the
baseline honeycomb beam and the optimized beam are presented in the figure. The optimization leads to a
20.0 dB reduction at 700Hz. This is to be compared with the results in Fig. 7 where the square cellular core
forms the baseline beam. The optimization with honeycomb baseline yields a different optimum than the one
obtained by starting from the square core beam.
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Fig. 11. Spectral distribution of the radiated sound power of the sandwich beam for tonal optimization. Dashed and solid lines,

respectively, refer to the optimized and honeycomb core baseline sandwich beams.
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Fig. 12. Spectral distribution of the radiated sound power for the beam with narrowband optimization. Dashed and solid lines refer,

respectively, to the optimized and the baseline sandwich beams. The shaded area depicts the reduction of the power over the targeted

frequency band.

Fig. 13. Optimal core topology for the narrowband case.
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6.2. Narrowband optimization

The frequency averaged power and its sensitivity are computed over a narrowband from 700 to 1200Hz.
The spectral variation of the power for the optimal and baseline beams are shown in Fig. 12. The reduction is
highlighted by the gray area where frequency averaged reduction is around 5.2 dB. The optimal core is
depicted in Fig. 13, and the sensitivity of the radiated acoustic power is shown in Fig. 14 for the baseline and
optimized beams.

6.3. Broadband optimization

The targeted frequency band covers the range from 100 to 1000Hz. The thickness of the cell frames are
considered as design parameters in addition to the longitudinal movements of the nodes. Each node movement
is bounded between �10 and 10 cm, and each frame thickness is limited between 0:1 and 5 cm. An optimal
configuration of the core and frame thickness is obtained as shown in Fig. 15. The shading of the frames
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Fig. 14. The sensitivity of the power with respect to the longitudinal displacement of the nodes. The top plot is for the optimized sandwich

beam for the narrowband case and the bottom one is for the baseline sandwich beam. Each circle shading level depicts the relative

sensitivity which is normalized by its maximum amplitude.

Fig. 15. Optimal core topology for the broadband case. The frame shading level code of the core from white to black describes the

thickness variation from 0:32 to 4.41 cm.

0 500 1000 1500
50

60

70

80

90

100

110

120

Frequency (Hz)

Po
w

er
 (

dB
)

Fig. 16. Spectral distribution of the radiated sound power for the beam with broadband optimization. Dashed and solid lines refer,

respectively, to the optimized and the baseline sandwich beams. The shaded area depicts the reduction of the power over the targeted

frequency band.
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Fig. 17. The sensitivity of the power with respect to the longitudinal displacement of the nodes. The top plot is for the optimized sandwich

beam in the broadband case and bottom one is for the baseline sandwich beam. Each circle shading level depicts the relative sensitivity

which is normalized by its maximum amplitude.
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indicates the thickness of the frame ranging from 0:32 to 4.41 cm. The radiated acoustic power variation of the
beams in the frequency domain is given in Fig. 16. The average sound power reduction, represented by the
gray area over the frequency band in the figure, is 4.9 dB. A sensitivity comparison of the optimized and
baseline beams indicates that the optimized beam is less sensitive to the nodal movements than the baseline
beam is as shown in Fig. 17.

The present optimization study does not consider manufacturability of the optimized structure. The design
variables can also include the thickness and material properties of the cell in addition to the topology, making
the optimized structure amenable to manufacturing. We have only allowed the nodes to move in the
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longitudinal direction in the optimization study. The transverse movement of the nodes can also be
considered. In general, more design parameters can lead to higher reduction of the radiated acoustic power.

7. Concluding remarks

We have presented an optimization study of the cellular core of sandwich structures to minimize the
radiated sound power in a given frequency band, subject to constraints on the fundamental frequency and
weight. Sensitivity functions are used in the optimization leading to more efficient and accurate numerical
solutions. Numerical results for frequency, narrowband and broadband optimizations are presented. The
longitudinal movements of core nodes and frame thicknesses are considered as design parameters in various
cases. Other design parameters can also be considered in the optimization study including transverse
movements of the nodes or material properties. The examples demonstrate that significant reduction of sound
radiation can be achieved with the optimized core topology as compared with the baseline structure.
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